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The beam-foil source has proved to be so useful for the study
of atomic energy levels that it is almost trivial to propose a vari-
ety of new experiments involving new elements, higher energies, a
broader wavelength range, shorter time intervals, pulsed beams, dif-
ferent targets, and new configurations in geometry or external
fields. However, what is perhaps not so trivial is to propose ex-
periments for which there is a specific purpose, experiments from
which a novel kind of information might be expected. It is from
this latter point of view that I shall talk about experiments which
seem to offer unusual opportunities to learn new things about atoms.

To start, Fig. 1 shows the type of beam-foil spectra well-known
to everyone here. These spectra were taken with iron,] accelerated
in one of the Brookhaven tandem Van de Graaffs. At the bottom are
data taken at an energy of 16 MeV; at the top are some results at
110 MeV. My colleagues in this experiment were Jack Leavitt (Ari-
zona), Keith Jones and Dan Pisano (Brookhaven), and Ted Kruse (Rut- :T{ij,.gszf
gers). ' s : Vv
While there are interesting changes in the spectra as the en- | :
ergy is raised, I wish to concentrate on the spectral analysis.
Many o these lines are tentatively identified as originating in
transitions between Bohr-type levels, that is, levels which, except
for the central charge, are hydrogenic in character, having large
values of n, of £, and of orbit radius. I take as a convenient
definition of a hydrogenic lzvsl oune which is degenerate in 2.

Preliminary analysis of the 16-MeV data suggests that hydrogen- ‘
ic lines from Fe X through Fe XVI are all present. Thus, Fig. 2 i ‘
illustrates the transitions which appear to derive from Fe XVI. b
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Fig. 1. Bgah;foi1-§pectra of iron at 16 MeV (Jower) and 110 MeV
{1ower) on carbon. The vertical lines indicate where maxima in the
curves line up.

The solid lines indicate transitions which are probably present in
the data; the dashed line indicates one which should have been seen
but wasn't. Clearly, irz “dentification of our data with Fe XVI as
the source is very cozd, fur we are missing vnly one of the many
transitions expected in our wavelength range.

Now the Bohr radius of orbit n is given by

-

ro=0-r (1)

where r, is the Bohr radius for the ground state of hydrogen. For
2=16 ang n=16, we find rn v 8A. Such an orbit, which is consider-
ably larger in radius than the atom-atom spacing (n~ 2A) in the foil,
ijs unexpected, but it is often claimed, as I have just claimed, that
the foil-excited ions commonly emerge in such states. A significant
question, then, is whether one has properiy interpreted the origin
of these so-called hydrogenic iines.

After all, the evidence for such an intzrpretation is only the
wavelength measurement and the Bohr-type caiculation. By proper
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Fig. 2. Transitions in Fe XVI. Observed transitions (solid), ex-
pected but unobserved transitions (dashed). Transition wavelengths
are indicated.

choice of An and the core charge, one can approximate virtually any
wavelength. An approximation is all that is needed, since the line-
width for the data of Fig. 1 was 15A, large enough to permit serious
errors of identification. Linewidths of that or even much larger
values are often used in BFS.

In the foregoing remarks I relied on Bohr theory to justify the
high net charge used in identifying the spectral lines. Other evi-
dence which may be used to substantiate that choice includes the
charge distribution of iron ions emerging from thin foils; the mean
charge, at the erergies we used, was +13 or more. More convincing
is the information displayed in Fig. 3. Here we see data on 35 MeV
Fe as obtained? with a grazing-incidence spectrometer installed on
the Oak Ridge tandem Van de Graaff. Tris work was done by Jones,
Pisano, Kruse, and myself, in collaboration with Paul Griffin, David
Pegg, and Ivan Sellin, of ORNL. Here we were able to see transi-
tions involving deep-lying states, where degeneracies of £, and even
of j, couid be resolved. Also, the linewidth was as narrow as 0.75A,
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Fig. 3. Beam-foil spectra of iron at 35 MeV. The topmost figure
shows high resolution data to be compared with the middle figure.
The bottom figure shows an extension of the wavelength range.

s0 the -spectroscopic identifications could t2= made with confidence.
A number of lines can be attributed to Fe XVI, and there doesn't

seem to be any reason to doubt that the lines detected in these two
experiments indeed originated in high stages of ionization of iron.
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Table 1. Transition probaﬁi?ities and their reciprocals for some
states in hydrogen. The average mean lives are calculated assuming
statistical equilibrium. After Capriotti (Ref. 3).

A(x 107°) Al gAlx 107°) T =z n/JoA
n.% (sec) {nsec) (sec) (nsec)z
6s 18.7 536 18.7
p 244.7 43 734.1
d 83.9 119 419.4
f 41.6 240 291.5 3192'8
g 74.8 404 222.8 o
h 16.4 609 180.6
12s 3.0 3,337 3.0
p 31.1 321 93.3
d 10.8 925 54.1
f 5.4 1,848 37.¢
g 3.3 3,102 29.0
1.7 5,721 19.2
j 1.5 6.630 10.6 4,452
k 1.1 8,908 16.8
£ 0.9 11,523 14.8
m 0.7 14,462 13.1
n 0.6 17,708 .9
0 0.5 21,357 10.8

Thus, if any of the lines are hydrogenic, the orbits are as large as
I have said.

However, there is an immediate reason for suspecting that the
lines disptayed in Fig. 1 are actually not accounted for by the hy-
drogenic assumption. In Table 1, we 1ist some_transition probabili-
ties for hydrogen, as calculated by Capriotti.3 Table 1 lists the
transition probabilities for each of the %&-states, the reciprecals
of those A-values, and the average mean 1ife of each n-level calcu-
lated on the assumption of statistical equilibrium,

Now the average mean life varies as 2"4 so that for the choice
of Z=16, we see that even for n=12, the average mean life is a mere
0. 07 nseg. Thus, even at 110 MeV, where the speed of an iron ion is
v 2 x 10° cm/sec, the mean decay length is only 1.4 mm. Yet, quite
remarkably, the perticle bzam was visible to the eye over the total
viewing length of some 10 cm. Unfortunately, time did not permit
us to make a detaiied spectroscopic study as a function of distance,
but it is qualitatively clear that we deal with states with life-
times far, far too long for the hydrogenic interpretation to be
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fully satisfactory. At least some of ihe states we excited may have
a different origin, perhaps in ssme forbidden transitions.

The hydrogenic aspect of BFS merits a thorough investigation.
What is needed, in part, is a non-spectroscopic test of the hydro-
genic character of the suspect lines. Let me discuss one such test,
which I proposed, and which Professor Leavitt has tried in the lab-
oratory.

By definition, a hydrogenic level exhibits a high degree of 2-
degeneracy, especially when n is large. Thus, each spectroscopic
term decays with a broad mixture of mean lives, the extreme range
being 14 at n=5, 39 at n=6, and 67 at n=12. MNow the application of
an external electric field has the effect of mixing the several %&-
states, with the result that the average mean life is reduced, often
sharply so. This is the basis for the test of hydrogenic character.

In Fig. 4 we see a schematic representation of the experiment.4
The intensity of the suspect line is measured at some point down-
stream from the foil. An electric field is applied parallel to the
particle velocityso as not to deflect the beam. The field is strong
enough to induce Stark-mixing of the %-levels, which reduces the
lifetime. For measurements made well downstream, the line intensity
dec}ines, but it rises for measurements made at the entrance to the
field. T 3

Leavitt has used this method, first, or krypton, and then, with
an improved geometry, on neon, He has kindly provided Fig. 5 from
some of his unpublished work.4 On the upper part, we see a spectral
scan, the spectrometer being a 1-meter normal-inc’dence instrument.
This scan was taken with zero external field. On.the lower part is
the same spectral region as studied with an applied field of 28
kV/cm. Clearly, the line at 2976A has been quenched, relative to
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Fig. 5. Beam-foil spectra of neon (top) without electric field,
and (bottom) with electric field.

the others. This line, which spectroscopy alone had identified as
coming from n=8 in Ne VIII, is hereby proved to orlg1nate in an £-
degenerate state.

Figure 6 shows a case in 0 VI. The lines near 3434A are at-
tributed to hydrogenic transitions, as illustrated. The method was
slightly changed for this case. Instead of taking complete spectral
scans with field off and on, Leavitt merely wmcasured the peak in-
tensity of each of these lines for field off and field on. The line
labzled €4-7f actually rose in intensity by 46% for a field strength
of 23 kV/cm, while both the other lines declined by 24%. Thus the
hydrogenic identification is substantiated.

This test is rather simple from the experimental point of view,
an' 1 believe that future work on spectra should include this
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Fig. 6. Beam-foil spectrum of oxygen showing hydrogenic transition
in O VI.

measurement. Furthermore, such observations bear on another impor-
tant subject, namely, the measurement of level lifetimes.

The standard type of experiment o2ften gives results such as are
displayed in Fig. 7. These data were presented by Roberts, Andersen,
and Sgrensen at the 1972 Beam-Foil Conference.® That group obtained
excellent lifetime data over a wide range of line intensities for
the decays of two different levels in Ti II. You will note that
the level Z “GP° exhibits a atrictly exponential decay over a factor
of 300 in yield, whereas e "G obviously does not decay exponentially.
The explanation of the latter curve is “hat the level of interest is
prpulated by cascades as well as by the direct beam-foil interaction.
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Fig. 7. Beam-foil lifetime data for two different levels in Ti II.
After Roberts et al. (Ref. 5).

However, if we look at Fig. 8, we see the quartet energy levels for
Ti II and the transitions which were used to produce Fig. 7.

What you notice is that it is the lower level, Z 4GP, into
which at least one cascade definitely occurs, which di581ays a
strictly exponential decay, whereas the upper level, e "G, into
which no cascading lines have ever been reported, decays in a non-

TIX EnERGY LEVELS

[P A—. - 2 - > i c} ‘r ~
- !
4
[ 1 )
- i
By :
§ ——
-
§. ~ we-—v == ey
- Ma—r
~ - l
H
'
. ni=3 |
J i
. |

Fig. 8. Energy levels for Ti II.
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Fig. 9. Beam-foil decay data for two levels in N V1. After Dufay
et al., Ref. 6.

exponential manner. Thus the lifetime data are not in accord with
the spectroscopic data.

Now it seems to me that the upper level cannot possibly be sig-
nificantiy affected by cascades. For one thing, it is fairly close
to the fonization 1imit; for another, there are no observed terms
which could decay into it. Of course, the decay data are definitely
non-exponential, and this anomaly, which occurs fairly often in BFS
lifetime work, must be explained.

Even more striking examples may be given. Figure z shows part
of the lcve'l3sgsteul of N VI, and also two decay curves.® Notice
that the 2p “P* level shows exponential decay, despite the fact that
it is fed by cascade from many higher.levels. Yet the decay of n=7,
which can hardly include any cascade contributions, shows substan-
tial curvature, whish is attributed to cascades. In Fig. 10, we
see some decay data’ for C Il and the level systems involved; the
same phenomenon occurs. The lower level, into which many levels de-
cay, shows no curvature, whereas the upper level, which is even
autoionizing_so that cascades into it are most unlikely, is curved.
Dufay's data® for N V a r in Fig. 11, along with the relevant
level scheme. The level under study is populated by cascades from
numerous others, oniy a few of which are indicated, but the decay
curve is exponential o!er a rance of three mean lives. On the other
MM.&C decay of 5f <F° is curved, a fact which is attributéd to
cascades.

One finds many similar situations in beam-foil papcrs.’ Levels

10
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Fig. 10. Beam-foil decay curve for two levels in C II. After
Ceyzeriat et al. (Ref. 7).

with low excitation which are known to be populated in cascade ex-
nibit little cascade effect, whereas high-lying levels often show
considerable curvature which is ascribed to cascades. Let me propose
o solution to this problem. If the level in question is hydrogenic,
we have many R-states with widely differing lifetimes. Therefore,
the decay curve is a composite of many exponentials, the exact form
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Fig. 11. Beam-foil decay data for a level in N V. After Dufay
et al. {Ref. 8).
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depending on the number and relative populations of those scates, as
well as on their specific mean lives. Thus there is a blend, com-
pletely unresolvable by means of standard optical spectroscopy, and
. there is substantial curvature in the decay, but there are no cas-
cades.

Now this suggested solution can be tested experimentally. One
uses the quenching technique I described earlier. If the line 1is
quenched, the parent term is hydrogenic, the curvature is explained,
and cascades disappear as an element in the analysis. I believe that
the curvature seen in the cases of C II, NV, and N VI is due to a
blend of many different &-states, and not to cascades. It would be
most informative if, for exam.'e, the case in Ti II were re-examined
for field effects. If they occur, it will be necessary to revise the
level identification, and we see that a quenching experiment might
contribute to a clarification of the quantum character of a level.

A curi?Hs situation occurs in 0 V. Figure 12 illustrates the
decay curve'V for a line at 2941A. There is unmistakable curvature
to the decay. This line was identified as coming from the n=6 to
n=5 transition. Moreover, the line at 4930 was observed and assigned
to the n=7 to n=6 transition. The curvature of 12941 was accounted
for in terms of cascades from n=7 and possibly higher levels.

There are several separate points to make here. In the first
place, the Bonhr-type calculation puts the n=6 to 5 transition at
2982A, rather than at 2941A. Thus the simple-minded Bohr calcT]ation
doesn't help identify A2941. However, Bockaster and Johanssoi'' have
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Fig. 12. Beam-foil decay curve for a level in O V. After
Ceyzeriat et al. (Ref. 10).



made a careful study of the Q0 V spectrum; by taking propér account
of configuration interactions, they found that 2941 is indeed the 6
to 5 line.

Now Leavitt also subjected 12941 to the external electric field.
The quenching effect was a mere 2%, so small that one cannot state
with certainty that there was any quenching at all. How can one ac-
count for this negative result? At the same time, one must explain
the curvature in the decay of 12941. The answers, I believe, lie
in the detailed structure of n=6. According to Bockasten and Johan-
sson, the %-levels for n=5 and n=6 are, respectively, very close in
energy, as Table 2 shows. Consequently, the "line" from 6 to’'S in-
¢ludes an unresolved blend of three or four %-state contributions.
This gives rise to the curvature in the decay. At the same time,
the principal constituents have lifetimes which are not only long,
but also about the same. As Table 1 showed, the lifetime of 6f, 6g,
and o in hydrogen are in the ratio 1 to 1.7 to 2.5, whereas the
dramatic difference occurs for 6p; that lifetime, relative to 6f, is
0.17, and is 0.07 retative to 6h. In the case of n=6 in 0 V, then,
we have 6f, g, and h close enough to be mixed by the field, but with
small effect on the 1ifetime; 6p, on the other hand, is too far
away for the small field we tried to have played any significant
role in reducing the average mean life. .

You will probably have recognized a certain handicap to the
field experiments as done to date, namely, because of the open aper-
ture and the utility of having a uniform field, observations had to
be made fairly far downstream. HNot only did this cost a lot of in-
tensity, but the relative influence of such cascades as might occur
becomes large. 1 believe it would improve matters considerably if
the apertures in the field plates were covered with foils, but we
have not yet had a chance to try that arrangement. As a matter of
fact, certain cases, as A294Y in 0 V, might be better studied at
much greater downstream distances; many different things remain to
be tried.

In the foregoing remarks, 1 have emphasized that the decays of
low-1ying states are often exponential, and that the non-exponential
behavior of high-lying states is probably caused by f-degeneracy.

We are, then, faced with the possibility that cascades have been em-
phasized unduly in much of the literature., Yet it is commonly found
that level lifetimes, as measured by the beam-foil method, are long-
er than caiculaticns would have us believe.14,13 Wiese, for exampie,
has often urged'” that experimenters pay particular attention to
evaluating the errors in their data, especially when the measured
lifetimes are too long. If cascades cannot be invoked to explain
the discrepancy between measured and calculated rma2an lives, what is
the correct.situation? This is precisely tne quesiion which, in my
view, must be answered by the experiments of the near future.



Table 2. Term values, in cm'], for 'n=5 and n=6 ir 0 V.
(After. Bockasten and Johansson (Ref. 11).

Config- Level Term Config- Level - Term
uration Symbo? Value uration Symbol Value
2555 5535, 122,589 | 2s6p 6p %, 80,285
5p 5p 3p, 115,78 e, 79,041
115,798 6d 6d 3p 77,624
'y 16390 'n, 76,570
5d 5d 303 112,208.9 |  6f 6f 3F, 75,918.0
;nz 112,211.9 3F3 75,937.0
by 2 * 75,953.0
D, 110,304.7 IF, 77,835.5
5 5t 3, 110,042 | 63 69 26 76,365.8
§F3 110,046.4 254 78,490.9
2 110,047.3 6, 78,533.6
Fy  109.740.2 6 78,271.8
5g 5 36, 110,268.4 | 6h 6h H ~  76,283.8
36423 110,272.1 | 2p6p  6p' O, 79,938
lg,” " 110,268.4 3, 79,798
2p5p 5p' 3p, 114,399 P, 79,938
- 3p, 116,072 'n, 78,220
o) 116,457
b, 113,119
5 sd' %,  110.754
S, 111,246 _
', 112,340 :
£, 109,158 -

The cascade possibility must be studied by attempts to identify
the cascade line or lines, despite the severe experimental difficul-
ties that generally impede such work. It might be worth mentioning
thas, in N Ig, there age several chains of decays, among them,
3s P2 - 3p "D3 - 3d FQ - 4f “65 with_successive wavelengths 56514,
5006A, and 4041A, and also 3s 5P3 - 3p 503 - 3d 5F5 with successive



wavelengths 5536A and 5178A, which could be studied with the same
grating.] In point of fact, this kind of investigation must be com-
plemented by others which are quite demanding. Thus, we all know
that cascades have an influence which depends on the relative popu-
lations of the level of interest and the feeding levels. Therefore
the effort must be made to determine those level populations. More-
over, levels are not populated in statistical equilibrium so the

problem is really one of measuring populations of individual 2-states.

One can easily extend the variety of experiments needed to clar-
ify the matter nf level lifetimes. Since 2-state populations must
be found, it becomes attractive to do the kiTg of work carried out
by Pipkin and his collaborators on hydrogen,'® namely, to send the
beam through a cavity so as to generate resonance microwave transi-
tions from one 2-level to another. Such studies are now being tried
in the Arizona laboratory by Drs. Dan Dietrich, William Wing, and
Jack Leavitt. Fimaily, it is increasingly attractive to think of
Zeeman experiments in which the magnetic field is narallel to the
particle beam. Such work should contribute important information on
the &-state componerts of some excited term. HhLaturally, these re-
searches could be further amplified by means of the tilted-foil geo-
metry. Associated with the foregoing experiments are others to clar-
ify the nature of the long-lived states observed in the Brookhaven
studies on iron. Lifetimes of several nanoseconds in ifons having a
net charge of +10 or more are too long by at least a factor of 10
to beiong to states with ordinary modes of decay.

I mentioned earlier that the orbits of the levels of large n
which are apparently detected in the work on iron imply electron
orbits perhaps 8A in radius. Such orbits surely cannot exist inside
the tu'1; whether they are created at the exit surface or in the
space just beyond that surface remains to be determined. Information
on thiis subject should also be extractable from the experiments I
have outlined.

If we Took at the fundamental aspects of BFS, we find that we
are just as far as ever from having a good theoretical model for the
excitation mechanism. It is particularly disturbing that we have no
way of accounting for the relative intensities of spectral lines.
Nearly all beam-foil spectral distributions show a few lines which
are strikingly prominent. Some of those lines, but by no means all,
are sensitive functions of the particle velocity. Work in the next
few years should be directed towards the acquisition of good data
or: this aspect of the beam-foil source, and the quenching experi-
ments have a definite rcle in that work. Perhaps the theorists
would then be stimulated to Took closely at the problem of relative
line intensities and the related but not identical problem of find-
ing the systematics of level populations.

To summarize my paper, I suggest that experiments for the near

15
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future should ireat the related problems of identifying hydrogenic
levels, of accounting for the non-exponential decay of levels, and
of determ1n1ng the ¢-state populations at each value of n. In order
of increasing difficulty, these experiments should involve line-
quenching with external electric fields, a thorough wavelength scan
with apparatus calibrated to give absolute line intensities, micro-
wave excitation of transitions between &-states, and Zeeman experi-

ments.,

I wish to thank Dr. Leavitt for having interrupted his own re-
search in order to provide some of the data I showed today. Mr.
Bartley Cardon has been most helpful in making calculations, search-
ing the literature, and discussing the general subject. I am also -
indebted to Dr. Indrek Martinson who, several years ago, emphasized
to me that the hydrogenic levels which the beam-foil source seems to
produce so proiifically merit close inspection. They do indeed.

REFERENCES

*Supported in part by NASA, ONR and NSF.

1. S. Bashkin, K. W. Jones, T. Kruse, v A, Leavitt, and D. Pisano,
to be published. .

2. S. Bashkin, P. M. Griffin, K. W. Jdones, T. Kruse, D. Pegg,
D. Pisano, and I. A. Sellin, to be published.

3. E. R. Capriotti, Astrophys. J. 139, 225 (1964).
4, J. A. lLeavitt, private communication.

5. J. R. Roberts, T. Andersen, and G. Sgrensen, Nucl. Instr. and
: Meth.‘llg, 119 (1973).

6. M. Dufay, A. Denis, and J. Desesquelles, Nuc] Instr. and Meth.
90, 85 (1970).

7. P. Ceyzeriat, A. Denis, J. Desesquelles, M. Druetta, and M. C.
Poulizac, Nuci. instr. and Meth. 90, 103 (1970}.

8. M. Dufay, A. Denis, and J. Desesquelles, loc. cit.

9. See S. Bashkin, Progress in Optics XII, 289 (1674) for a dis-
cussion of this situation.

10. P. Ceyzeriat, A. Denis, J. Desesquelles, loc. cit.

11. K. Bockasten and K. B. Johansson, Arkiv f. Physik 38, 563 (1968)}.



a1 b

12.
13.

14.
15.

16.

W. L. Wiese, Nucl. Instr. and Meth. 90, 25 {1970).

M. W. Smith, G. A. Martin, and W. L. Wiese, Nucl. Instr. and

Meth. 110, 219 (1973).

W. L. Wiese, private communications.

U. Fink, 6. N. McIntire, and S.

475 (1968).

F. Pipkin, this conference.

Bashkin, J. Opt. Soc. Am. 58,

17





